{ "cells": [ { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# Inverted pendulum - DAE System\n", "\n", "## Introduction\n", "\n", "This example shows the simulation and control of an inverted pendulum on a cart. We are going to use this example to show how your can add algebraic equations to the model\n", "\n", "\n", "\n", "\n", "The differential algebraic system of the inverted pendulum is given by the following equations:\n", "\n", "## Model\n", "$$\n", "\\begin{align}\n", " \\dot{x} &= v \\\\\n", " \\dot{v} &= \\frac{(3/4mg\\sin(\\theta)\\cos(\\theta) - 1/2ml\\sin(\\theta)\\omega^2 + F)}{(M + m - 3/4m\\cos(\\theta)^2)} \\\\\n", " \\dot{\\theta} &= \\omega\\\\\n", " \\dot{\\omega} &= \\frac{3}{(2l)} (\\dot{v}\\cos(\\theta) + g\\sin(\\theta))\\\\\n", " y =& h + l\\cos(theta)\n", "\\end{align}\n", "$$\n", "\n", "The differential and algebraic states are:\n", "\n", "\n", "- $x$: x-Position of the mass M [m]\n", "- $v$: Linear velocity of the mass M [m/s]\n", "- $\\theta$: Angle of the metal rod [rad]\n", "- $\\omega$: Angular velocity of the mass m [rad/s]\n", "- $y$: y-Position of the mass M [m]\n", "\n", "\n", "The inputs that could be applied to control the system are:\n", "\n", "- $F$: Force applied to the cart [kg*m/s^2]\n", "\n", "The constants of the system are:\n", "\n", "- $M$: Mass of the cart [kg]\n", "- $m$: Mass of the pendulum [kg]\n", "- $l$: Length of the lever arm [m]\n", "- $h$: Height of the rod connection [m]\n", "- $g$: Gravitational acceleration [m/s^2]\n", " \n", "## Objective\n", "The objective is to stabilize the weight attached to the rod at $\\theta = 0$ and keep the cart still i.e. $v=0$.\n", "The control problem is the following: \n", "$$\n", "\\begin{align}\n", " &\\!\\max_{\\mathbf{u}(\\cdot)}&\\qquad& \\sum_{i=1}^{N}10 v(t_i)^2 + 5 \\theta(t_i)^2 + 0.1F(t_i)^2 + 10v(t_{N+1})^2 + 5\\theta(t_{N+1})^2 \\\\\n", " &\\text{s.t.}&&\\dot{x}=f(x,u),\\quad x(0)=x_0\\\\\n", " &&&x \\in [x_{lb}, x_{ub}], \\,\\ u \\in [u_{lb}, u_{ub}].\n", "\\end{align}\n", "$$" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## Modelling with Neo\n", "Neo can solve use model containing differential algebraic equations (DAEs). These can be added created in three steps:\n", "\n", "1. Create the algebraic variables with the `set_algebraic_variables` method\n", "2. Use the algebraic variables in the model.\n", "3. Add the algebraic equations using the `set_algebraic_equations` method. Note that the algebraic equations must be in the form $g(x,z)=0$\n", "\n", "Remember to give an initial guess for the algebraic variable." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Solver 'cvodes' is not suitable for DAE systems. Switching to 'idas'...\n" ] } ], "source": [ "# Add HILO-MPC to path. NOT NECESSARY if it was installed via pip.\n", "import sys\n", "sys.path.append('../../../')\n", "\n", "from hilo_mpc import NMPC, Model\n", "import casadi as ca\n", "\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "model = Model(plot_backend='bokeh')\n", "\n", "# Constants\n", "M = 5.\n", "m = 1.\n", "l = 1.\n", "h = .5\n", "g = 9.81\n", "\n", "# States and algebraic variables\n", "x = model.set_dynamical_states(['x', 'v', 'theta', 'omega'])\n", "model.set_measurements(['yx', 'yv', 'ytheta', 'tomega'])\n", "model.set_measurement_equations([x[0], x[1], x[2], x[3]])\n", "y = model.set_algebraic_states(['y'])\n", "\n", "# Unwrap states\n", "v = x[1]\n", "theta = x[2]\n", "omega = x[3]\n", "\n", "# Define inputs\n", "F = model.set_inputs('F')\n", "\n", "# ODEs\n", "dd = ca.SX.sym('dd', 4)\n", "dd[0] = v\n", "dd[1] = 1. / (M + m - m * ca.cos(theta)) * (m * g * ca.sin(theta) - m * l * ca.sin(theta) * omega ** 2 + F)\n", "dd[2] = omega\n", "dd[3] = 1. / l * (dd[1] * ca.cos(theta) + g * ca.sin(theta))\n", "\n", "\n", "# Algebraic equations (note that it is written in the form rhs = 0)\n", "rhs = h + l * ca.cos(theta) - y\n", "\n", "# Add differential equations\n", "model.set_dynamical_equations(dd)\n", "\n", "# Add algebraic equations\n", "model.set_algebraic_equations(rhs)\n", "\n", "# Initial conditions\n", "x0 = [2.5, 0., 0.1, 0.]\n", "\n", "\n", "# Initial guess algebraic states\n", "z0 = h + l * ca.cos(x0[2]) - h\n", "#Initial guess input\n", "u0 = 0.\n", "\n", "# Setup the model\n", "dt = .1\n", "model.setup(dt=dt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternativelly you can define the model more compactly in string form. HILO-MPC will parse it for you" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# model = Model(plot_backend='bokeh')\n", "\n", "# # Define system\n", "# equations = \"\"\"\n", "# # Constants\n", "# M = 5\n", "# m = 1\n", "# l = 1\n", "# h = 0.5\n", "# g = 9.81\n", "\n", "# # DAE\n", "# dx(t)/dt = v(t)\n", "# dv(t)/dt = 1/(M + m - 3/4*m*cos(theta(t))^2) * (3/4*m*g*sin(theta(t))*cos(theta(t)) ...\n", "# - 1/2*m*l*sin(theta(t))*omega(t)^2 + F(k))\n", "# d/dt(theta(t)) = omega(t)\n", "# d/dt(omega(t)) = 3/(2*l) * (dv(t)/dt*cos(theta(t)) + g*sin(theta(t)))\n", "# 0 = h + l*cos(theta(t)) - y(t)\n", "# \"\"\"\n", "# model.set_equations(equations)\n", "\n", "# # Setup model\n", "# model.setup(dt=dt)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NMPC with Neo" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "******************************************************************************\n", "This program contains Ipopt, a library for large-scale nonlinear optimization.\n", " Ipopt is released as open source code under the Eclipse Public License (EPL).\n", " For more information visit http://projects.coin-or.org/Ipopt\n", "******************************************************************************\n", "\n" ] } ], "source": [ "nmpc = NMPC(model)\n", "\n", "nmpc.quad_stage_cost.add_states(names=['v', 'theta'], ref=[0, 0], weights=[10, 5])\n", "\n", "nmpc.quad_stage_cost.add_inputs(names='F', weights=0.1)\n", "\n", "nmpc.horizon = 25\n", "\n", "nmpc.set_box_constraints(x_ub=[5, 10, 10, 10], x_lb=[-5, -10, -10, -10])\n", "\n", "nmpc.set_initial_guess(x_guess=x0, u_guess=u0)\n", "\n", "nmpc.setup(options={'print_level': 0})\n", "\n", "n_steps = 100\n", "\n", "model.set_initial_conditions(x0=x0, z0=z0)\n", "\n", "sol = model.solution\n", "\n", "for step in range(n_steps):\n", " u = nmpc.optimize(x0)\n", " model.simulate(u=u, steps=1)\n", " x0 = sol['x:f']\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plots\n", "Here the results. The plotting will be automatize such that you can quickly get the plots without writing much." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/javascript": [ "\n", "(function(root) {\n", " function now() {\n", " return new Date();\n", " }\n", "\n", " var force = true;\n", "\n", " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", " root._bokeh_onload_callbacks = [];\n", " root._bokeh_is_loading = undefined;\n", " }\n", "\n", " var JS_MIME_TYPE = 'application/javascript';\n", " var HTML_MIME_TYPE = 'text/html';\n", " var EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", " var CLASS_NAME = 'output_bokeh rendered_html';\n", "\n", " /**\n", " * Render data to the DOM node\n", " */\n", " function render(props, node) {\n", " var script = document.createElement(\"script\");\n", " node.appendChild(script);\n", " }\n", "\n", " /**\n", " * Handle when an output is cleared or removed\n", " */\n", " function handleClearOutput(event, handle) {\n", " var cell = handle.cell;\n", "\n", " var id = cell.output_area._bokeh_element_id;\n", " var server_id = cell.output_area._bokeh_server_id;\n", " // Clean up Bokeh references\n", " if (id != null && id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", "\n", " if (server_id !== undefined) {\n", " // Clean up Bokeh references\n", " var cmd = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", " cell.notebook.kernel.execute(cmd, {\n", " iopub: {\n", " output: function(msg) {\n", " var id = msg.content.text.trim();\n", " if (id in Bokeh.index) {\n", " Bokeh.index[id].model.document.clear();\n", " delete Bokeh.index[id];\n", " }\n", " }\n", " }\n", " });\n", " // Destroy server and session\n", " var cmd = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", " cell.notebook.kernel.execute(cmd);\n", " }\n", " }\n", "\n", " /**\n", " * Handle when a new output is added\n", " */\n", " function handleAddOutput(event, handle) {\n", " var output_area = handle.output_area;\n", " var output = handle.output;\n", "\n", " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", " return\n", " }\n", "\n", " var toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", "\n", " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", " // store reference to embed id on output_area\n", " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", " }\n", " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", " var bk_div = document.createElement(\"div\");\n", " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", " var script_attrs = bk_div.children[0].attributes;\n", " for (var i = 0; i < script_attrs.length; i++) {\n", " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", " }\n", " // store reference to server id on output_area\n", " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", " }\n", " }\n", "\n", " function register_renderer(events, OutputArea) {\n", "\n", " function append_mime(data, metadata, element) {\n", " // create a DOM node to render to\n", " var toinsert = this.create_output_subarea(\n", " metadata,\n", " CLASS_NAME,\n", " EXEC_MIME_TYPE\n", " );\n", " this.keyboard_manager.register_events(toinsert);\n", " // Render to node\n", " var props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", " render(props, toinsert[toinsert.length - 1]);\n", " element.append(toinsert);\n", " return toinsert\n", " }\n", "\n", " /* Handle when an output is cleared or removed */\n", " events.on('clear_output.CodeCell', handleClearOutput);\n", " events.on('delete.Cell', handleClearOutput);\n", "\n", " /* Handle when a new output is added */\n", " events.on('output_added.OutputArea', handleAddOutput);\n", "\n", " /**\n", " * Register the mime type and append_mime function with output_area\n", " */\n", " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", " /* Is output safe? */\n", " safe: true,\n", " /* Index of renderer in `output_area.display_order` */\n", " index: 0\n", " });\n", " }\n", "\n", " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", " if (root.Jupyter !== undefined) {\n", " var events = require('base/js/events');\n", " var OutputArea = require('notebook/js/outputarea').OutputArea;\n", "\n", " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", " register_renderer(events, OutputArea);\n", " }\n", " }\n", "\n", " \n", " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", " root._bokeh_timeout = Date.now() + 5000;\n", " root._bokeh_failed_load = false;\n", " }\n", "\n", " var NB_LOAD_WARNING = {'data': {'text/html':\n", " \"\\n\"+\n", " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", " \"
\\n\"+\n", " \"\\n\"+\n",
" \"from bokeh.resources import INLINE\\n\"+\n",
" \"output_notebook(resources=INLINE)\\n\"+\n",
" \"
\\n\"+\n",
" \"\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"
\\n\"+\n \"\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"
\\n\"+\n \"